Obviously, this theorem is false, but it is a good way to show off your math chops and confuse a friend who may be taking an introductory course in math reasoning. This ‘proof’ is purely for fun, but does point out an important part of inductive proofs, which is that the assumption for the ‘n’th case must imply our statement is true in the ‘n+1’th case for any arbitrary n. Take what you will from this proof, but it reminds me of a joke I heard once. A mathematician, physicist, and engineer are on a train in spain and see a white horse. The engineer remarks, “all horses are white!” to which the physicist and mathematician shake their heads. “No no no,” says the physicist, “what this means is that some horses in spain are white.” to which the mathematician shakes his head. The mathematician thinks for a little, and says “In passing we saw a white horse grazing in the plains of spain; therefore, there exists at least one horse in spain, of which at least one side is white.” and the thre...
Number theory is a very old subject, which is concerned with the set of integers. Number theory started with the concept of integers and simple operations on the integers such as addition, subtraction, etc. Number theory of the greeks is primarily found in the works of Euclid and Plato. Indian mathematicians of antiquity such as Brahmagupta also made significant contributions (one of Brahmagupta's contributions was work on what is now known as Pell's equation). Pierre de Fermat was an important figure in number theory as well, he is responsible for Fermat's theorem as well as Fermat's Last Theorem (a problem which is now solved). Some additional major figures in early number theory were Leonhard Euler, Joseph-Louis Lagrange, and Carl Friedrich Gauss. Eventually number theory itself started to split into recognizable subbranches, two major ones being algebraic number theory and analytical number theory. Analytical number theory is concerned with the use of real and compl...
Comments
Post a Comment